using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Linq;
using Microsoft.Xna.Framework;
using Microsoft.Xna.Framework.Audio;
using Microsoft.Xna.Framework.Graphics;
using Microsoft.Xna.Framework.Input;
using MLEM.Extensions;
using MLEM.Input;
using MLEM.Misc;
using MLEM.Textures;
using MLEM.Ui.Style;
namespace MLEM.Ui.Elements {
///
/// This class represents a generic base class for ui elements of a .
///
public abstract class Element : GenericDataHolder {
///
/// A list of all of this element's direct children.
/// Use or to manipulate this list while calling all of the necessary callbacks.
///
protected readonly List Children = new List();
private readonly List sortedChildren = new List();
///
/// A sorted version of . The children are sorted by their .
///
protected List SortedChildren {
get {
this.UpdateSortedChildrenIfDirty();
return this.sortedChildren;
}
}
private bool sortedChildrenDirty;
private UiSystem system;
///
/// The ui system that this element is currently a part of
///
public UiSystem System {
get => this.system;
internal set {
this.system = value;
this.Controls = value?.Controls;
if (this.system != null)
this.InitStyle(this.system.Style);
}
}
///
/// The controls that this element's uses
///
public UiControls Controls;
///
/// The input handler that this element's use
///
protected InputHandler Input => this.Controls.Input;
///
/// This element's parent element.
/// If this element has no parent (it is the of a ui system), this value is null.
///
public Element Parent { get; private set; }
///
/// This element's .
/// Note that this value is set even if this element has a . To get the element that represents the root element, use .
///
public RootElement Root { get; internal set; }
///
/// The scale that this ui element renders with
///
public float Scale => this.Root.ActualScale;
private Anchor anchor;
///
/// The that this element uses for positioning within its parent
///
public Anchor Anchor {
get => this.anchor;
set {
if (this.anchor == value)
return;
this.anchor = value;
this.SetAreaDirty();
}
}
private Vector2 size;
///
/// The size of this element, where X represents the width and Y represents the height.
/// If the x or y value of the size is between 0 and 1, the size will be seen as a percentage of its parent's size rather than as an absolute value.
/// If the x (or y) value of the size is negative, the width (or height) is seen as a percentage of the element's resulting height (or width).
/// If is true, this property's X value is ignored and overridden. If is true, this property's Y value is ignored and overridden.
///
///
/// The following example combines both types of percentage-based sizing.
/// If this element is inside of a whose width is 20, this element's width will be set to 0.5 * 20 = 10, and its height will be set to 2.5 * 10 = 25.
///
/// element.Size = new Vector2(0.5F, -2.5F);
///
///
public Vector2 Size {
get => this.size;
set {
if (this.size == value)
return;
this.size = value;
this.SetAreaDirty();
}
}
///
/// The , but with applied.
///
public Vector2 ScaledSize => this.size * this.Scale;
private Vector2 offset;
///
/// This element's offset from its default position, which is dictated by its .
/// Note that, depending on the side that the element is anchored to, this offset moves it in a different direction.
///
public Vector2 PositionOffset {
get => this.offset;
set {
if (this.offset == value)
return;
this.offset = value;
this.SetAreaDirty();
}
}
///
/// The , but with applied.
///
public Vector2 ScaledOffset => this.offset * this.Scale;
///
/// The padding that this element has.
/// The padding is subtracted from the element's , and it is an area that the element does not extend into. This means that this element's resulting does not include this padding.
///
public Padding Padding;
///
/// The , but with applied.
///
public Padding ScaledPadding => this.Padding * this.Scale;
private Padding childPadding;
///
/// The child padding that this element has.
/// The child padding moves any added to this element inwards by the given amount in each direction.
///
public Padding ChildPadding {
get => this.childPadding;
set {
if (this.childPadding == value)
return;
this.childPadding = value;
this.SetAreaDirty();
}
}
///
/// The , but with applied.
///
public Padding ScaledChildPadding => this.childPadding * this.Scale;
///
/// This element's current , but with applied.
///
public RectangleF ChildPaddedArea => this.UnscrolledArea.Shrink(this.ScaledChildPadding);
private RectangleF area;
///
/// This element's area, without respecting its .
/// This area is updated automatically to fit this element's sizing and positioning properties.
///
public RectangleF UnscrolledArea {
get {
this.UpdateAreaIfDirty();
return this.area;
}
}
private bool areaDirty;
///
/// The of this element, but with applied.
///
public RectangleF Area => this.UnscrolledArea.OffsetCopy(this.ScaledScrollOffset);
///
/// The area that this element is displayed in, which is shrunk by this element's .
/// This is the property that should be used for drawing this element, as well as mouse input handling and culling.
///
public RectangleF DisplayArea => this.Area.Shrink(this.ScaledPadding);
///
/// The offset that this element has as a result of scrolling.
///
public Vector2 ScrollOffset;
///
/// The , but with applied.
///
public Vector2 ScaledScrollOffset => this.ScrollOffset * this.Scale;
private bool isHidden;
///
/// Set this property to true to cause this element to be hidden.
/// Hidden elements don't receive input events, aren't rendered and don't factor into auto-anchoring.
///
public bool IsHidden {
get => this.isHidden;
set {
if (this.isHidden == value)
return;
this.isHidden = value;
this.SetAreaDirty();
}
}
private int priority;
///
/// The priority of this element as part of its element.
/// A higher priority means the element will be drawn first and, if auto-anchoring is used, anchored higher up within its parent.
///
public int Priority {
get => this.priority;
set {
if (this.priority == value)
return;
this.priority = value;
if (this.Parent != null)
this.Parent.SetSortedChildrenDirty();
}
}
///
/// Set this field to false to disallow the element from being selected.
/// An unselectable element is skipped by automatic navigation and its callback will never be called.
///
public bool CanBeSelected = true;
///
/// Set this field to false to disallow the element from reacting to being moused over.
///
public bool CanBeMoused = true;
///
/// Set this field to false to disallow this element's and events to be called.
///
public bool CanBePressed = true;
///
/// Set this field to false to cause auto-anchored siblings to ignore this element as a possible anchor point.
///
public bool CanAutoAnchorsAttach = true;
///
/// Set this field to true to cause this element's height to be automatically calculated based on the area that its take up.
///
public bool SetHeightBasedOnChildren;
///
/// Set this field to true to cause this element's width to be automatically calculated based on the area that is take up.
///
public bool SetWidthBasedOnChildren;
///
/// Set this field to true to cause this element's final display area to never exceed that of its .
/// If the resulting area is too large, the size of this element is shrunk to fit the target area.
/// This can be useful if an element should fill the remaining area of a parent exactly.
///
public bool PreventParentSpill;
///
/// The transparency (alpha value) that this element is rendered with.
/// Note that, when is called, this alpha value is multiplied with the 's alpha value and passed down to this element's .
///
public float DrawAlpha = 1;
///
/// Stores whether this element is currently being moused over or touched.
///
public bool IsMouseOver { get; protected set; }
///
/// Stores whether this element is its 's .
///
public bool IsSelected { get; protected set; }
///
/// Event that is called after this element is drawn, but before its children are drawn
///
public DrawCallback OnDrawn;
///
/// Event that is called when this element is updated
///
public TimeCallback OnUpdated;
///
/// Event that is called when this element is pressed
///
public GenericCallback OnPressed;
///
/// Event that is called when this element is pressed using the secondary action
///
public GenericCallback OnSecondaryPressed;
///
/// Event that is called when this element's is turned true
///
public GenericCallback OnSelected;
///
/// Event that is called when this element's is turned false
///
public GenericCallback OnDeselected;
///
/// Event that is called when this element starts being moused over
///
public GenericCallback OnMouseEnter;
///
/// Event that is called when this element stops being moused over
///
public GenericCallback OnMouseExit;
///
/// Event that is called when this element starts being touched
///
public GenericCallback OnTouchEnter;
///
/// Event that is called when this element stops being touched
///
public GenericCallback OnTouchExit;
///
/// Event that is called when text input is made.
/// Note that this event is called for every element, even if it is not selected.
/// Also note that if is true, this event is never called.
///
public TextInputCallback OnTextInput;
///
/// Event that is called when this element's is changed.
///
public GenericCallback OnAreaUpdated;
///
/// Event that is called when the element that is currently being moused changes within the ui system.
/// Note that the event fired doesn't necessarily correlate to this specific element.
///
public OtherElementCallback OnMousedElementChanged;
///
/// Event that is called when the element that is currently being touched changes within the ui system.
/// Note that the event fired doesn't necessarily correlate to this specific element.
///
public OtherElementCallback OnTouchedElementChanged;
///
/// Event that is called when the element that is currently selected changes within the ui system.
/// Note that the event fired doesn't necessarily correlate to this specific element.
///
public OtherElementCallback OnSelectedElementChanged;
///
/// Event that is called when the next element to select when pressing tab is calculated.
/// To cause a different element than the default one to be selected, return it during this event.
///
public TabNextElementCallback GetTabNextElement;
///
/// Event that is called when the next element to select when using gamepad input is calculated.
/// To cause a different element than the default one to be selected, return it during this event.
///
public GamepadNextElementCallback GetGamepadNextElement;
///
/// Event that is called when a child is added to this element using
///
public OtherElementCallback OnChildAdded;
///
/// Event that is called when a child is removed from this element using
///
public OtherElementCallback OnChildRemoved;
///
/// A style property that contains the selection indicator that is displayed on this element if it is the
///
public StyleProp SelectionIndicator;
///
/// A style property that contains the sound effect that is played when this element's is called
///
public StyleProp ActionSound;
///
/// A style property that contains the sound effect that is played when this element's is called
///
public StyleProp SecondActionSound;
///
/// Creates a new element with the given anchor and size and sets up some default event reactions.
///
/// This element's
/// This element's default
protected Element(Anchor anchor, Vector2 size) {
this.anchor = anchor;
this.size = size;
this.OnMouseEnter += element => this.IsMouseOver = true;
this.OnMouseExit += element => this.IsMouseOver = false;
this.OnTouchEnter += element => this.IsMouseOver = true;
this.OnTouchExit += element => this.IsMouseOver = false;
this.OnSelected += element => this.IsSelected = true;
this.OnDeselected += element => this.IsSelected = false;
this.GetTabNextElement += (backward, next) => next;
this.GetGamepadNextElement += (dir, next) => next;
this.SetAreaDirty();
}
///
/// Adds a child to this element.
///
/// The child element to add
/// The index to add the child at, or -1 to add it to the end of the list
/// The type of child to add
/// This element, for chaining
public T AddChild(T element, int index = -1) where T : Element {
if (index < 0 || index > this.Children.Count)
index = this.Children.Count;
this.Children.Insert(index, element);
element.Parent = this;
element.AndChildren(e => {
e.Root = this.Root;
e.System = this.System;
this.Root?.OnElementAdded(e);
this.OnChildAdded?.Invoke(this, e);
});
this.SetSortedChildrenDirty();
element.SetAreaDirty();
return element;
}
///
/// Removes the given child from this element.
///
/// The child element to remove
public void RemoveChild(Element element) {
this.Children.Remove(element);
// set area dirty here so that a dirty call is made
// upwards to us if the element is auto-positioned
element.SetAreaDirty();
element.Parent = null;
element.AndChildren(e => {
e.Root = null;
e.System = null;
this.Root?.OnElementRemoved(e);
this.OnChildRemoved?.Invoke(this, e);
});
this.SetSortedChildrenDirty();
}
///
/// Removes all children from this element that match the given condition.
///
/// The condition that determines if a child should be removed
public void RemoveChildren(Func condition = null) {
for (var i = this.Children.Count - 1; i >= 0; i--) {
var child = this.Children[i];
if (condition == null || condition(child)) {
this.RemoveChild(child);
}
}
}
///
/// Causes to be recalculated as soon as possible.
///
public void SetSortedChildrenDirty() {
this.sortedChildrenDirty = true;
}
///
/// Updates the list if is true.
///
public void UpdateSortedChildrenIfDirty() {
if (this.sortedChildrenDirty)
this.ForceUpdateSortedChildren();
}
///
/// Forces an update of the list.
///
public virtual void ForceUpdateSortedChildren() {
this.sortedChildrenDirty = false;
this.sortedChildren.Clear();
this.sortedChildren.AddRange(this.Children);
this.sortedChildren.Sort((e1, e2) => e1.Priority.CompareTo(e2.Priority));
}
///
/// Causes this element's to be recalculated as soon as possible.
/// If this element is auto-anchored or its parent automatically changes its size based on its children, this element's parent's area is also marked dirty.
///
public void SetAreaDirty() {
this.areaDirty = true;
if (this.Parent != null && (this.Anchor >= Anchor.AutoLeft || this.Parent.SetWidthBasedOnChildren || this.Parent.SetHeightBasedOnChildren))
this.Parent.SetAreaDirty();
}
///
/// Updates this element's list if is true.
///
public void UpdateAreaIfDirty() {
if (this.areaDirty)
this.ForceUpdateArea();
}
///
/// Forces this element's to be updated if it is not .
/// This method also updates all of this element's 's areas.
///
public virtual void ForceUpdateArea() {
this.areaDirty = false;
if (this.IsHidden)
return;
var parentArea = this.Parent != null ? this.Parent.ChildPaddedArea : (RectangleF) this.system.Viewport;
var parentCenterX = parentArea.X + parentArea.Width / 2;
var parentCenterY = parentArea.Y + parentArea.Height / 2;
var actualSize = this.CalcActualSize(parentArea);
var pos = new Vector2();
switch (this.anchor) {
case Anchor.TopLeft:
case Anchor.AutoLeft:
case Anchor.AutoInline:
case Anchor.AutoInlineIgnoreOverflow:
pos.X = parentArea.X + this.ScaledOffset.X;
pos.Y = parentArea.Y + this.ScaledOffset.Y;
break;
case Anchor.TopCenter:
case Anchor.AutoCenter:
pos.X = parentCenterX - actualSize.X / 2 + this.ScaledOffset.X;
pos.Y = parentArea.Y + this.ScaledOffset.Y;
break;
case Anchor.TopRight:
case Anchor.AutoRight:
pos.X = parentArea.Right - actualSize.X - this.ScaledOffset.X;
pos.Y = parentArea.Y + this.ScaledOffset.Y;
break;
case Anchor.CenterLeft:
pos.X = parentArea.X + this.ScaledOffset.X;
pos.Y = parentCenterY - actualSize.Y / 2 + this.ScaledOffset.Y;
break;
case Anchor.Center:
pos.X = parentCenterX - actualSize.X / 2 + this.ScaledOffset.X;
pos.Y = parentCenterY - actualSize.Y / 2 + this.ScaledOffset.Y;
break;
case Anchor.CenterRight:
pos.X = parentArea.Right - actualSize.X - this.ScaledOffset.X;
pos.Y = parentCenterY - actualSize.Y / 2 + this.ScaledOffset.Y;
break;
case Anchor.BottomLeft:
pos.X = parentArea.X + this.ScaledOffset.X;
pos.Y = parentArea.Bottom - actualSize.Y - this.ScaledOffset.Y;
break;
case Anchor.BottomCenter:
pos.X = parentCenterX - actualSize.X / 2 + this.ScaledOffset.X;
pos.Y = parentArea.Bottom - actualSize.Y - this.ScaledOffset.Y;
break;
case Anchor.BottomRight:
pos.X = parentArea.Right - actualSize.X - this.ScaledOffset.X;
pos.Y = parentArea.Bottom - actualSize.Y - this.ScaledOffset.Y;
break;
}
if (this.Anchor >= Anchor.AutoLeft) {
Element previousChild;
if (this.Anchor == Anchor.AutoInline || this.Anchor == Anchor.AutoInlineIgnoreOverflow) {
previousChild = this.GetOlderSibling(e => !e.IsHidden && e.CanAutoAnchorsAttach);
} else {
previousChild = this.GetLowestOlderSibling(e => !e.IsHidden && e.CanAutoAnchorsAttach);
}
if (previousChild != null) {
var prevArea = previousChild.GetAreaForAutoAnchors();
switch (this.Anchor) {
case Anchor.AutoLeft:
case Anchor.AutoCenter:
case Anchor.AutoRight:
pos.Y = prevArea.Bottom + this.ScaledOffset.Y;
break;
case Anchor.AutoInline:
var newX = prevArea.Right + this.ScaledOffset.X;
if (newX + actualSize.X <= parentArea.Right) {
pos.X = newX;
pos.Y = prevArea.Y + this.ScaledOffset.Y;
} else {
pos.Y = prevArea.Bottom + this.ScaledOffset.Y;
}
break;
case Anchor.AutoInlineIgnoreOverflow:
pos.X = prevArea.Right + this.ScaledOffset.X;
pos.Y = prevArea.Y;
break;
}
}
}
if (this.PreventParentSpill) {
if (pos.X < parentArea.X)
pos.X = parentArea.X;
if (pos.Y < parentArea.Y)
pos.Y = parentArea.Y;
if (pos.X + actualSize.X > parentArea.Right)
actualSize.X = parentArea.Right - pos.X;
if (pos.Y + actualSize.Y > parentArea.Bottom)
actualSize.Y = parentArea.Bottom - pos.Y;
}
this.area = new RectangleF(pos, actualSize);
this.System.OnElementAreaUpdated?.Invoke(this);
foreach (var child in this.Children)
child.ForceUpdateArea();
if (this.Children.Count > 0) {
var changed = false;
if (this.SetHeightBasedOnChildren) {
var lowest = this.GetLowestChild(e => !e.IsHidden);
if (lowest != null) {
var newHeight = (lowest.UnscrolledArea.Bottom - pos.Y + this.ScaledChildPadding.Bottom) / this.Scale;
if (!newHeight.Equals(this.size.Y, 0.01F)) {
this.size.Y = newHeight;
changed = true;
}
}
}
if (this.SetWidthBasedOnChildren) {
var rightmost = this.GetRightmostChild(e => !e.IsHidden);
if (rightmost != null) {
var newWidth = (rightmost.UnscrolledArea.Right - pos.X + this.ScaledChildPadding.Right) / this.Scale;
if (!newWidth.Equals(this.size.X, 0.01F)) {
this.size.X = newWidth;
changed = true;
}
}
}
if (changed)
this.ForceUpdateArea();
}
}
///
/// Calculates the actual size that this element should take up, based on the area that its parent encompasses.
/// By default, this is based on the information specified in 's documentation.
///
/// This parent's area, or the ui system's viewport if it has no parent
/// The actual size of this element, taking into account
protected virtual Vector2 CalcActualSize(RectangleF parentArea) {
var ret = new Vector2(
this.size.X > 1 ? this.ScaledSize.X : parentArea.Width * this.size.X,
this.size.Y > 1 ? this.ScaledSize.Y : parentArea.Height * this.size.Y);
if (this.size.X < 0)
ret.X = -this.size.X * ret.Y;
if (this.size.Y < 0)
ret.Y = -this.size.Y * ret.X;
return ret;
}
///
/// Returns the area that should be used for determining where auto-anchoring children should attach.
///
/// The area for auto anchors
protected virtual RectangleF GetAreaForAutoAnchors() {
return this.UnscrolledArea;
}
///
/// Returns this element's lowest child element (in terms of y position) that matches the given condition.
///
/// The condition to match
/// The lowest element, or null if no such element exists
public Element GetLowestChild(Func condition = null) {
Element lowest = null;
foreach (var child in this.Children) {
if (condition != null && !condition(child))
continue;
if (child.Anchor > Anchor.TopRight && child.Anchor < Anchor.AutoLeft)
continue;
if (lowest == null || child.UnscrolledArea.Bottom >= lowest.UnscrolledArea.Bottom)
lowest = child;
}
return lowest;
}
///
/// Returns this element's rightmost child (in terms of x position) that matches the given condition.
///
/// The condition to match
/// The rightmost element, or null if no such element exists
public Element GetRightmostChild(Func condition = null) {
Element rightmost = null;
foreach (var child in this.Children) {
if (condition != null && !condition(child))
continue;
if (child.Anchor < Anchor.AutoLeft && child.Anchor != Anchor.TopLeft && child.Anchor != Anchor.CenterLeft && child.Anchor != Anchor.BottomLeft)
continue;
if (rightmost == null || child.UnscrolledArea.Right >= rightmost.UnscrolledArea.Right)
rightmost = child;
}
return rightmost;
}
///
/// Returns this element's lowest sibling that is also older (lower in its parent's list) than this element that also matches the given condition.
/// The returned element's will always be equal to this element's .
///
/// The condition to match
/// The lowest older sibling of this element, or null if no such element exists
public Element GetLowestOlderSibling(Func condition = null) {
if (this.Parent == null)
return null;
Element lowest = null;
foreach (var child in this.Parent.Children) {
if (child == this)
break;
if (condition != null && !condition(child))
continue;
if (lowest == null || child.UnscrolledArea.Bottom >= lowest.UnscrolledArea.Bottom)
lowest = child;
}
return lowest;
}
///
/// Returns this element's first older sibling that matches the given condition.
/// The returned element's will always be equal to this element's .
///
/// The condition to match
/// The older sibling, or null if no such element exists
public Element GetOlderSibling(Func condition = null) {
if (this.Parent == null)
return null;
Element older = null;
foreach (var child in this.Parent.Children) {
if (child == this)
break;
if (condition != null && !condition(child))
continue;
older = child;
}
return older;
}
///
/// Returns all of this element's siblings that match the given condition.
/// Siblings are elements that have the same as this element.
///
/// The condition to match
/// This element's siblings
public IEnumerable GetSiblings(Func condition = null) {
if (this.Parent == null)
yield break;
foreach (var child in this.Parent.Children) {
if (condition != null && !condition(child))
continue;
if (child != this)
yield return child;
}
}
///
/// Returns all of this element's children of the given type that match the given condition.
/// Optionally, the entire tree of children (grandchildren) can be searched.
///
/// The condition to match
/// If this value is true, children of children of this element are also searched
/// If this value is true, children for which the condition does not match will not have their children searched
/// The type of children to search for
/// All children that match the condition
public IEnumerable GetChildren(Func condition = null, bool regardGrandchildren = false, bool ignoreFalseGrandchildren = false) where T : Element {
foreach (var child in this.Children) {
var applies = child is T t && (condition == null || condition(t));
if (applies)
yield return (T) child;
if (regardGrandchildren && (!ignoreFalseGrandchildren || applies)) {
foreach (var cc in child.GetChildren(condition, true, ignoreFalseGrandchildren))
yield return cc;
}
}
}
///
public IEnumerable GetChildren(Func condition = null, bool regardGrandchildren = false, bool ignoreFalseGrandchildren = false) {
return this.GetChildren(condition, regardGrandchildren, ignoreFalseGrandchildren);
}
///
/// Returns the parent tree of this element.
/// The parent tree is this element's , followed by its parent, and so on, up until the 's .
///
/// This element's parent tree
public IEnumerable GetParentTree() {
if (this.Parent == null)
yield break;
yield return this.Parent;
foreach (var parent in this.Parent.GetParentTree())
yield return parent;
}
///
/// Returns a subset of that are currently relevant in terms of drawing and input querying.
/// A only returns elements that are currently in view here.
///
/// This element's relevant children
protected virtual List GetRelevantChildren() {
return this.SortedChildren;
}
///
/// Updates this element and all of its
///
/// The game's time
public virtual void Update(GameTime time) {
this.System.OnElementUpdated?.Invoke(this, time);
foreach (var child in this.GetRelevantChildren())
if (child.System != null)
child.Update(time);
}
///
/// Draws this element and all of its
/// Note that, when this is called, has already been called.
///
/// The game's time
/// The sprite batch to use for drawing
/// The alpha to draw this element and its children with
/// The blend state that is used for drawing
/// The sampler state that is used for drawing
/// The transformation matrix that is used for drawing
public virtual void Draw(GameTime time, SpriteBatch batch, float alpha, BlendState blendState, SamplerState samplerState, Matrix matrix) {
this.System.OnElementDrawn?.Invoke(this, time, batch, alpha);
if (this.IsSelected)
this.System.OnSelectedElementDrawn?.Invoke(this, time, batch, alpha);
foreach (var child in this.GetRelevantChildren()) {
if (!child.IsHidden)
child.Draw(time, batch, alpha * child.DrawAlpha, blendState, samplerState, matrix);
}
}
///
/// Draws this element and all of its early.
/// Drawing early involves drawing onto instances rather than onto the screen.
/// Note that, when this is called, has not yet been called.
///
/// The game's time
/// The sprite batch to use for drawing
/// The alpha to draw this element and its children with
/// The blend state that is used for drawing
/// The sampler state that is used for drawing
/// The transformation matrix that is used for drawing
public virtual void DrawEarly(GameTime time, SpriteBatch batch, float alpha, BlendState blendState, SamplerState samplerState, Matrix matrix) {
foreach (var child in this.GetRelevantChildren()) {
if (!child.IsHidden)
child.DrawEarly(time, batch, alpha * child.DrawAlpha, blendState, samplerState, matrix);
}
}
///
/// Returns the element under the given position, searching the current element and all of its .
///
/// The position to query
/// The element under the position, or null if no such element exists
public virtual Element GetElementUnderPos(Vector2 position) {
if (this.IsHidden)
return null;
var children = this.GetRelevantChildren();
for (var i = children.Count - 1; i >= 0; i--) {
var element = children[i].GetElementUnderPos(position);
if (element != null)
return element;
}
return this.CanBeMoused && this.DisplayArea.Contains(position) ? this : null;
}
///
/// Performs the specified action on this element and all of its
///
/// The action to perform
public void AndChildren(Action action) {
action(this);
foreach (var child in this.Children)
child.AndChildren(action);
}
///
/// Sorts this element's using the given comparison.
///
/// The comparison to sort by
public void ReorderChildren(Comparison comparison) {
this.Children.Sort(comparison);
}
///
/// Reverses this element's list in the given range.
///
/// The index to start reversing at
/// The amount of elements to reverse
public void ReverseChildren(int index = 0, int? count = null) {
this.Children.Reverse(index, count ?? this.Children.Count);
}
///
/// Initializes this element's instances using the ui system's .
///
/// The new style
protected virtual void InitStyle(UiStyle style) {
this.SelectionIndicator.SetFromStyle(style.SelectionIndicator);
this.ActionSound.SetFromStyle(style.ActionSound?.CreateInstance());
this.SecondActionSound.SetFromStyle(style.ActionSound?.CreateInstance());
}
///
/// A delegate used for the event.
///
/// The current element
/// The key that was pressed
/// The character that was input
public delegate void TextInputCallback(Element element, Keys key, char character);
///
/// A generic element-specific delegate.
///
/// The current element
public delegate void GenericCallback(Element element);
///
/// A generic element-specific delegate that includes a second element.
///
/// The current element
/// The other element
public delegate void OtherElementCallback(Element thisElement, Element otherElement);
///
/// A delegate used inside of
///
/// The element that is being drawn
/// The game's time
/// The sprite batch used for drawing
/// The alpha this element is drawn with
public delegate void DrawCallback(Element element, GameTime time, SpriteBatch batch, float alpha);
///
/// A generic delegate used inside of
///
/// The current element
/// The game's time
public delegate void TimeCallback(Element element, GameTime time);
///
/// A delegate used by .
///
/// If this value is true, is being held
/// The element that is considered to be the next element by default
public delegate Element TabNextElementCallback(bool backward, Element usualNext);
///
/// A delegate used by .
///
/// The direction of the gamepad button that was pressed
/// The element that is considered to be the next element by default
public delegate Element GamepadNextElementCallback(Direction2 dir, Element usualNext);
}
}